Variances in the Expression of mRNAs and miRNAs Related to the Histaminergic System in Endometrioid Endometrial Cancer

Author:

Czerwiński MichałORCID,Bednarska-Czerwińska AnnaORCID,Ordon Paweł,Gradzik Magdalena,Oplawski MarcinORCID,Boroń DariuszORCID,Zientek Hanna,Ogloszka Oskar,Grabarek Beniamin OskarORCID

Abstract

Research has indicated higher concentrations of histamine and polyamine in endometrioid tissue in comparison with healthy tissue. The aim of this study was to evaluate changes in the expression patterns of messenger RNA (mRNAs) and microRNA (miRNAs) related to the histaminergic system in endometrial samples and whole blood in women with endometrioid endometrial cancer. The study group consisted of 30 women with endometrioid endometrial cancer qualified for hysterectomy (G1 well-differentiated, 15 cases; G2 moderately differentiated, 8 cases; and G3 poorly differentiated, 7 cases). The control group included 30 women with no neoplastic changes during routine gynecological examinations. The molecular analysis consisted of the microarray analysis of mRNAs and miRNAs related to the histaminergic system, reverse-transcription quantitative polymerase chain reaction (RTqPCR), and enzyme-linked immunosorbent assay (ELISA). Out of 65 mRNAs connected with the histaminergic system, 10 differentiate the samples of tissue and blood obtained from patients with endometrioid endometrial cancer in comparison with the control group (p < 0.05). mRNA histamine receptor 1,3 (HRH1, HRH3), and solute carrier family 22 member 3 (SLC23A2) differentiating samples of endometrioid endometrial cancer independent of either G or control. The highest probability of interaction, based on the target score miRDB, between the selected miRNAs and mRNAs was found for the hybrids hsa-miR-1-3p and endothelin 1 (END1), hsa-miR-27a-5β and SLC23A2. The selected mRNA and miRNA transcripts seem to be promising for molecularly targeted therapies in the context of endometrioid endometrial cancer.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3