Dysbiosis Signature of Fecal Microbiota in Patients with Pancreatic Adenocarcinoma and Pancreatic Intraductal Papillary Mucinous Neoplasms

Author:

Sidiropoulos Theodoros1ORCID,Dovrolis Nikolas2ORCID,Katifelis Hector2ORCID,Michalopoulos Nikolaos V.1,Kokoropoulos Panagiotis1,Arkadopoulos Nikolaos1,Gazouli Maria2ORCID

Affiliation:

1. 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece

2. Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece

Abstract

Pancreatic cancer (PC) ranks as the seventh leading cause of cancer-related deaths, with approximately 500,000 new cases reported in 2020. Existing strategies for early PC detection primarily target individuals at high risk of developing the disease. Nevertheless, there is a pressing need to identify innovative clinical approaches and personalized treatments for effective PC management. This study aimed to explore the dysbiosis signature of the fecal microbiota in PC and potential distinctions between its Intraductal papillary mucinous neoplasm (IPMN) and pancreatic ductal adenocarcinoma (PDAC) phenotypes, which could carry diagnostic significance. The study enrolled 33 participants, including 22 diagnosed with PDAC, 11 with IPMN, and 24 healthy controls. Fecal samples were collected and subjected to microbial diversity analysis across various taxonomic levels. The findings revealed elevated abundances of Firmicutes and Proteobacteria in PC patients, whereas healthy controls exhibited higher proportions of Bacteroidota. Both LEfSe and Random Forest analyses indicated the microbiome’s potential to effectively distinguish between PC and healthy control samples but fell short of differentiating between IPMN and PDAC samples. These results contribute to the current understanding of this challenging cancer type and highlight the applications of microbiome research. In essence, the study provides clear evidence of the gut microbiome’s capability to serve as a biomarker for PC detection, emphasizing the steps required for further differentiation among its diverse phenotypes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3