Fourier Transform Infrared Spectroscopy Reveals Molecular Changes in Blood Vessels of Rats Treated with Pentadecapeptide BPC 157

Author:

Gamulin OzrenORCID,Oroz Katarina,Coric Luka,Krajacic Maria,Skrabic MarkoORCID,Dretar Vilim,Strbe Sanja,Talapko JasminkaORCID,Juzbasic MartinaORCID,Krezic Ivan,Lozic MarinORCID,Stambolija Vasilije,Zizek Helena,Jurca Ivana,Jurjevic Ivana,Blagaic Alenka Boban,Skrtic AnitaORCID,Seiwerth Sven,Sikiric Predrag

Abstract

Recently, it was found that when confronted with major vessel occlusion and vascular failure, stable gastric pentadecapeptide BPC 157 therapy might rapidly functionally improve minor vessels to take over the function of disabled major vessels, reorganize blood flow, and compensate failed vessel function. We focused on the BPC 157 therapy effect obtained by giving 10 ng/kg ip to rats 5 min before sacrifice on the rat thoracic aorta, which we assessed with Fourier transform infrared spectroscopy (FTIR) 90 min thereafter. We applied a principal component analysis (PCA). The PCA model showed, with a clear distinction being mostly due to the PC1 score, differences between the spectra of BPC 157- and saline-treated rats. The comparison of the averaged spectra of these two groups with their differential spectrum and PC loadings allowed us to identify the parts of the FTIR spectra that contributed the most to the spectral separation of the two observed groups. The PC1 loadings and the differential spectrum showed that the main bands affecting the separation were the amid I band around 1650 cm−1, the amid II band around 1540 cm−1, and the vibrational band around 1744 cm−1. Fitting the spectral range between 1450 and 1800 cm−1 showed changes in protein conformation and confirmed the appearance of the vibrational band at 1744 cm−1. Controls had a substantially more intense vibrational band at 1744 cm−1. These spectral results showed the cells from saline-treated (control) rats to be in the early stage of cell death, while the samples from BPC 157-rats were protected. Thus, BPC 157 therapy changed the lipid contents and protein secondary structure conformation, with a rapid effect on vessels, within a short time upon application.

Funder

University of Zagreb

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3