Non-Invasive Pulsatile Shear Stress Modifies Endothelial Activation; A Narrative Review

Author:

Adams Jose A.ORCID,Uryash ArkadyORCID,Lopez Jose R.

Abstract

The monolayer of cells that line both the heart and the entire vasculature is the endothelial cell (EC). These cells respond to external and internal signals, producing a wide array of primary or secondary messengers involved in coagulation, vascular tone, inflammation, and cell-to-cell signaling. Endothelial cell activation is the process by which EC changes from a quiescent cell phenotype, which maintains cellular integrity, antithrombotic, and anti-inflammatory properties, to a phenotype that is prothrombotic, pro-inflammatory, and permeable, in addition to repair and leukocyte trafficking at the site of injury or infection. Pathological activation of EC leads to increased vascular permeability, thrombosis, and an uncontrolled inflammatory response that leads to endothelial dysfunction. This pathological activation can be observed during ischemia reperfusion injury (IRI) and sepsis. Shear stress (SS) and pulsatile shear stress (PSS) are produced by mechanical frictional forces of blood flow and contraction of the heart, respectively, and are well-known mechanical signals that affect EC function, morphology, and gene expression. PSS promotes EC homeostasis and cardiovascular health. The archetype of inducing PSS is exercise (i.e., jogging, which introduces pulsations to the body as a function of the foot striking the pavement), or mechanical devices which induce external pulsations to the body (Enhanced External Pulsation (EECP), Whole-body vibration (WBV), and Whole-body periodic acceleration (WBPA aka pGz)). The purpose of this narrative review is to focus on the aforementioned noninvasive methods to increase PSS, review how each of these modify specific diseases that have been shown to induce endothelial activation and microcirculatory dysfunction (Ischemia reperfusion injury-myocardial infarction and cardiac arrest and resuscitation), sepsis, and lipopolysaccharide-induced sepsis syndrome (LPS)), and review current evidence and insight into how each may modify endothelial activation and how these may be beneficial in the acute and chronic setting of endothelial activation and microvascular dysfunction.

Funder

Florida Heart Research Institute

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference206 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3