Loss of the Synuclein Family Members Differentially Affects Baseline- and Apomorphine-Associated EEG Determinants in Single-, Double- and Triple-Knockout Mice

Author:

Vorobyov VasilyORCID,Deev Alexander,Sukhanova Iuliia,Morozova Olga,Oganesyan Zoya,Chaprov KirillORCID,Buchman Vladimir L.

Abstract

Synucleins comprise a family of small proteins highly expressed in the nervous system of vertebrates and involved in various intraneuronal processes. The malfunction of alpha-synuclein is one of the key events in pathogenesis of Parkinson disease and certain other neurodegenerative diseases, and there is a growing body of evidence that malfunction of other two synucleins might be involved in pathological processes in the nervous system. The modulation of various presynaptic mechanisms of neurotransmission is an important function of synucleins, and therefore, it is feasible that their deficiency might affect global electrical activity detected of the brain. However, the effects of the loss of synucleins on the frequency spectra of electroencephalograms (EEGs) have not been systematically studied so far. In the current study, we assessed changes in such spectra in single-, double- and triple-knockout mice lacking alpha-, beta- and gamma-synucleins in all possible combinations. EEGs were recorded from the motor cortex, the putamen, the ventral tegmental area and the substantia nigra of 78 3-month-old male mice from seven knockout groups maintained on the C57BL/6J genetic background, and 10 wild-type C57BL/6J mice for 30 min before and for 60 min after the systemic injection of a DA receptor agonist, apomorphine (APO). We found that almost any variant of synuclein deficiency causes multiple changes in both basal and APO-induced EEG oscillation profiles. Therefore, it is not the absence of any particular synuclein but rather a disbalance of synucleins that causes widespread changes in EEG spectral profiles.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3