Hypoxia-Induced Downregulation of miR-29 in Renal Tumor Cells Affects Collagen IV Subunit Expression through Multiple Sites

Author:

Liu ChunchengORCID,Liu Linan,Bo Jinlai,Lu Xian,Qu Donghui,Liu Gehui,Jiang Zhiyan,Cai Lu

Abstract

Multiple tumor exacerbations and treatment procedures, such as extracellular matrix remodeling, metabolic reprogramming, immunological evasion, and resistance to chemotherapy and radiotherapy, are influenced by intratumoral hypoxia. It is becoming increasingly clear how hypoxia interacts with the extracellular matrix and how this affects the growth of cancer. We analyzed the published sequencing results of hypoxia-stressed mouse kidney tumor cells and found that the expression of miR-29b was significantly downregulated. There are several sites that are complementary to the miR-29 seed sequence in the 3’ non-coding regions (3’UTRs) of various extracellular matrix-related genes, including collagen IV. We analyzed the sequences of the 3’UTRs of different subunits of collagen IV in different species and constructed the corresponding phylogenetic trees. We found that the 3’UTRs of Col4a1 and Col4a4 may have been subjected to particular evolutionary pressures. By cloning the 3’UTRs of collagen IV subunits into the psiCHECKTM-2 vector, we found that seven of the eight sites in the Col4a3–Col4a6 gene complementary to miR-29 were significantly repressed by miR-29a, b (except for the 7774–7781 of Col4a3 gene). The inhibitory efficiency of miR-29a, b on these seven sites was between 27% and 57%. The research on the regulation of miR-29 and extracellular matrix by hypoxia can provide a theoretical basis for tumor and fibrosis research and treatment.

Funder

National Natural Science Foundation of China

the Innovation Foundation of Inner Mongolia University of Science & Technology

Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region of China

the Natural Science Foundation of Inner Mongolia

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3