Abstract
Saturated free fatty acids (FFAs) strongly correlate with metabolic syndromes and are well-known risk factors for cardiovascular diseases (CVDs). The mechanism of palmitic acid (PA)-induced vascular lipotoxicity under endoplasmic reticulum (ER) stress is unknown. In the present paper, we investigate the roles of spliced form of X-box-binding protein 1 (XBP1s) target gene oxidative stress-induced growth inhibitor 1 (OSGIN1) in PA-induced vascular dysfunction. PA inhibited the tube formation assay of primary human umbilical vein endothelial cells (HUVECs). Simultaneously, PA treatment induced the XBP1s expression in HUVECs. Attenuate the induction of XBP1s by silencing the XBP1s retarded cell migration and diminished endothelial nitric oxide synthase (eNOS) expression. OSGIN1 is a target gene of XBP1s under PA treatment. The silencing of OSGIN1 inhibits cell migration by decreasing phospho-eNOS expression. PA activated autophagy in endothelial cells, inhibiting autophagy by 3-methyladenine (3-MA) decreased endothelial cell migration. Silencing XBP1s and OSGIN1 would reduce the induction of LC3 II; therefore, OSGIN1 could maintain autophagy to preserve endothelial cell migration. In conclusion, PA treatment induced ER stress and activated the inositol-requiring enzyme 1 alpha–spliced XBP1 (IRE1α–XBP1s) pathway. OSGIN1, a target gene of XBP1s, could protect endothelial cells from vascular lipotoxicity by regulating autophagy.
Funder
National Taiwan University Hospital
NTUH-FEMH Joint Research Program
Far Eastern Memorial hospital
Ministry of Science and Technology, Taiwan
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献