Lung Inflammation Predictors in Combined Immune Checkpoint-Inhibitor and Radiation Therapy—Proof-of-Concept Animal Study

Author:

Spieler Benjamin,Giret Teresa M.,Welford Scott,Totiger Tulasigeri M.,Mihaylov Ivaylo B.

Abstract

Purpose: Combined radiotherapy (RT) and immune checkpoint-inhibitor (ICI) therapy can act synergistically to enhance tumor response beyond what either treatment can achieve alone. Alongside the revolutionary impact of ICIs on cancer therapy, life-threatening potential side effects, such as checkpoint-inhibitor-induced (CIP) pneumonitis, remain underreported and unpredictable. In this preclinical study, we hypothesized that routinely collected data such as imaging, blood counts, and blood cytokine levels can be utilized to build a model that predicts lung inflammation associated with combined RT/ICI therapy. Materials and Methods: This proof-of-concept investigational work was performed on Lewis lung carcinoma in a syngeneic murine model. Nineteen mice were used, four as untreated controls and the rest subjected to RT/ICI therapy. Tumors were implanted subcutaneously in both flanks and upon reaching volumes of ~200 mm3 the animals were imaged with both CT and MRI and blood was collected. Quantitative radiomics features were extracted from imaging of both lungs. The animals then received RT to the right flank tumor only with a regimen of three 8 Gy fractions (one fraction per day over 3 days) with PD-1 inhibitor administration delivered intraperitoneally after each daily RT fraction. Tumor volume evolution was followed until tumors reached the maximum size allowed by the Institutional Animal Care and Use Committee (IACUC). The animals were sacrificed, and lung tissues harvested for immunohistochemistry evaluation. Tissue biomarkers of lung inflammation (CD45) were tallied, and binary logistic regression analyses were performed to create models predictive of lung inflammation, incorporating pretreatment CT/MRI radiomics, blood counts, and blood cytokines. Results: The treated animal cohort was dichotomized by the median value of CD45 infiltration in the lungs. Four pretreatment radiomics features (3 CT features and 1 MRI feature) together with pre-treatment neutrophil-to-lymphocyte (NLR) ratio and pre-treatment granulocyte-macrophage colony-stimulating factor (GM-CSF) level correlated with dichotomized CD45 infiltration. Predictive models were created by combining radiomics with NLR and GM-CSF. Receiver operating characteristic (ROC) analyses of two-fold internal cross-validation indicated that the predictive model incorporating MR radiomics had an average area under the curve (AUC) of 0.834, while the model incorporating CT radiomics had an AUC of 0.787. Conclusions: Model building using quantitative imaging data, blood counts, and blood cytokines resulted in lung inflammation prediction models justifying the study hypothesis. The models yielded very-good-to-excellent AUCs of more than 0.78 on internal cross-validation analyses.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3