Toxic Exposure to Endocrine Disruptors Worsens Parkinson’s Disease Progression through NRF2/HO-1 Alteration

Author:

D’Amico RamonaORCID,Gugliandolo Enrico,Siracusa RosalbaORCID,Cordaro MarikaORCID,Genovese Tiziana,Peritore Alessio FilippoORCID,Crupi RosaliaORCID,Interdonato Livia,Di Paola DavideORCID,Cuzzocrea SalvatoreORCID,Fusco RobertaORCID,Impellizzeri DanielaORCID,Di Paola RosannaORCID

Abstract

Human exposure to endocrine disruptors (EDs) has attracted considerable attention in recent years. Different studies showed that ED exposure may exacerbate the deterioration of the nervous system’s dopaminergic capacity and cerebral inflammation, suggesting a promotion of neurodegeneration. In that regard, the aim of this research was to investigate the impact of ED exposure on the neuroinflammation and oxidative stress in an experimental model of Parkinson’s disease (PD). PD was induced by intraperitoneally injections of MPTP for a total dose of 80 mg/kg for each mouse. Mice were orally exposed to EDs, starting 24 h after the first MPTP administration and continuing through seven additional days. Our results showed that ED exposure raised the loss of TH and DAT induced by the administration of MPTP, as well as increased aggregation of α-synuclein, a key marker of PD. Additionally, oral exposure to EDs induced astrocytes and microglia activation that, in turn, exacerbates oxidative stress, perturbs the Nrf2 signaling pathway and activates the cascade of MAPKs. Finally, we performed behavioral tests to demonstrate that the alterations in the dopaminergic system also reflected behavioral and cognitive alterations. Importantly, these changes are more significant after exposure to atrazine compared to other EDs. The results from our study provide evidence that exposure to EDs may play a role in the development of PD; therefore, exposure to EDs should be limited.

Funder

This research was supported by Ministero dell’Istruzione, dell’Università e della Ricerca (MI-UR), PRIN 2017

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3