Long-Term Reduction of Bacterial Adhesion on Polyurethane by an Ultra-Thin Surface Modifier

Author:

De La Franier Brian,Asker Dalal,Hatton Benjamin,Thompson MichaelORCID

Abstract

Indwelling urinary catheters are employed widely to relieve urinary retention in patients. A common side effect of the use of these catheters is the formation of urinary tract infections (UTIs), which can lead not only to severe medical complications, but even to death. A number of approaches have been used to attempt reduction in the rate of UTI development in catheterized patients, which include the application of antibiotics and modification of the device surface by coatings. Many of these coatings have not seen use on catheters in medical settings due to either the high cost of their implementation, their long-term stability, or their safety. In previous work, it has been established that the simple, stable, and easily applicable sterilization surface coating 2-(3-trichlorosilylpropyloxy)-ethyl hydroxide (MEG-OH) can be applied to polyurethane plastic, where it greatly reduces microbial fouling from a variety of species for a 1-day time period. In the present work, we establish that this coating is able to remain stable and provide a similarly large reduction in fouling against Escherichia coli and Staphylococcus aureus for time periods in an excess of 30 days. This non-specific coating functioned against both Gram-positive and Gram-negative bacteria, providing a log 1.1 to log 1.9 reduction, depending on the species and day. This stability and continued efficacy greatly suggest that MEG-OH may be capable of providing a solution to the UTI issue which occurs with urinary catheters.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3