Transcriptional Activity of Metalloproteinase 9 (MMP-9) and Tissue Metalloproteinase 1 (TIMP-1) Genes as a Diagnostic and Prognostic Marker of Heart Failure Due to Ischemic Heart Disease

Author:

Korzeń Dariusz1,Sierka Oskar2,Dąbek Józefa3ORCID

Affiliation:

1. Provincial Specialist Hospital Megrez Sp. z o. o., Edukacji Street 102, 43-100 Tychy, Poland

2. Student Research Group at the Department of Cardiology, Department of Cardiology, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Ziołowa Street 45/47, 40-635 Katowice, Poland

3. Department of Cardiology, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Ziołowa Street 45/47, 40-635 Katowice, Poland

Abstract

The most common cause of heart failure (HF) is coronary artery disease (CAD). The aim of this study was to evaluate the transcriptional activity of the metalloproteinase 9 (MMP-9) and tissue metalloproteinase inhibitor 1 (TIMP-1) genes in a study group of patients with HF due to CAD and in the control group, as well as assess the transcriptional activity of the examined genes, taking into account the number of affected coronary arteries and the severity of heart failure. The study group consisted of a total of 150 (100%) patients. The material for the study was peripheral blood, and molecular tests were performed using the quantitative QRT-PCR technique. The transcriptional activity of the MMP-9 gene was significantly higher in the group of patients with CAD and HF. It was also significantly higher with the progression of heart failure. TIMP-1 gene transcriptional activity was significantly lower with the advancement of heart failure. The transcriptional activity of the MMP-9 and TIMP-1 genes differentiated the examined patients. The severity of HF, and a significant increase in the QRT-PCR transcriptional activity of the MMP-9 gene with a simultaneous decrease in the activity of the TIMP-1 gene, makes them useful diagnostic and prognostic markers in clinical practice.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3