Abstract
Mutations in subunits of the SWItch Sucrose Non-Fermentable (SWI/SNF) complex occur in 20% of all human tumors. Among these, the core subunit SMARCB1 is the most frequently mutated, and SMARCB1 loss represents a founder driver event in several malignancies, such as malignant rhabdoid tumors (MRT), epithelioid sarcoma, poorly differentiated chordoma, and renal medullary carcinoma (RMC). Intriguingly, SMARCB1-deficient pediatric MRT and RMC have recently been reported to be immunogenic, despite their very simple genome and low tumor mutational burden. Responses to immune checkpoint inhibitors have further been reported in some SMARCB1-deficient diseases. Here, we will review the preclinical data and clinical data that suggest that immunotherapy, including immune checkpoint inhibitors, may represent a promising therapeutic strategy for SMARCB1-defective tumors. We notably discuss the heterogeneity that exists among the spectrum of malignancies driven by SMARCB1-loss, and highlight challenges that are at stake for developing a personalized immunotherapy for these tumors, notably using molecular profiling of the tumor and of its microenvironment.
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献