MiRNAs in Systemic Sclerosis Patients with Pulmonary Arterial Hypertension: Markers and Effectors

Author:

Zaaroor Levy Mor,Rabinowicz Noa,Yamila Kohon Maia,Shalom Avshalom,Berl ArielORCID,Hornik-Lurie Tzipi,Drucker Liat,Tartakover Matalon Shelly,Levy Yair

Abstract

Background: Pulmonary arterial hypertension (PAH) is a major cause of death in systemic sclerosis (SSc). Early detection may improve patient outcomes. Methods: We searched for circulating miRNAs that would constitute biomarkers in SSc patients with PAH (SSc-PAH). We compared miRNA levels and laboratory parameters while evaluating miRNA levels in white blood cells (WBCs) and myofibroblasts. Results: Our study found: 1) miR-26 and miR-let-7d levels were significantly lower in SSc-PAH (n = 12) versus SSc without PAH (SSc-noPAH) patients (n = 25); 2) a positive correlation between miR-26 and miR-let-7d and complement-C3; 3) GO-annotations of genes that are miR-26/miR-let-7d targets and that are expressed in myofibroblast cells, suggesting that these miRNAs regulate the TGF-β-pathway; 4) reduced levels of both miRNAs accompanied fibroblast differentiation to myofibroblasts, while macitentan (endothelin receptor-antagonist) increased the levels. WBCs of SSc-noPAH and SSc-PAH patients contained equal amounts of miR-26/miR-let-7d. During the study, an echocardiograph that predicted PAH development, showed increased pulmonary artery pressure in three SSc-noPAH patients. At study initiation, those patients and an additional SSc-noPAH patient, who eventually developed PAH, had miR-let-7d/miR-26 levels similar to those of SSc-PAH patients. This implies that reduced miR-let-7d/miR-26 levels might be an early indication of PAH. Conclusions: miR-26 and miR-let-7d may be serological markers for SSc-PAH. The results of our study suggest their involvement in myofibroblast differentiation and complement pathway activation, both of which are active in PAH development.

Funder

Actelion Pharmaceuticals

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3