Rapid Fabrication of MgNH4PO4·H2O/SrHPO4 Porous Composite Scaffolds with Improved Radiopacity via 3D Printing Process

Author:

Cao XiaofengORCID,Ge WufeiORCID,Wang Yihu,Ma Ming,Wang Ying,Zhang Bing,Wang Jianing,Guo Yanchuan

Abstract

Although bone repair scaffolds are required to possess high radiopacity to be distinguished from natural bone tissues in clinical applications, the intrinsic radiopacity of them is usually insufficient. For improving the radiopacity, combining X-ray contrast agents with bone repair scaffolds is an effective method. In the present research, MgNH4PO4·H2O/SrHPO4 3D porous composite scaffolds with improved radiopacity were fabricated via the 3D printing technique. Here, SrHPO4 was firstly used as a radiopaque agent to improve the radiopacity of magnesium phosphate scaffolds. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) were used to characterize the phases, morphologies, and element compositions of the 3D porous composite scaffolds. The radiography image showed that greater SrHPO4 contents corresponded to higher radiopacity. When the SrHPO4 content reached 9.34%, the radiopacity of the composite scaffolds was equal to that of a 6.8 mm Al ladder. The porosity and in vitro degradation of the porous composite scaffolds were studied in detail. The results show that magnesium phosphate scaffolds with various Sr contents could sustainably degrade and release the Mg, Sr, and P elements during the experiment period of 28 days. In addition, the cytotoxicity on MC3T3-E1 osteoblast precursor cells was evaluated, and the results show that the porous composite scaffolds with a SrHPO4 content of 9.34% possessed superior cytocompatibility compared to that of the pure MgNH4PO4·H2O scaffolds when the extract concentration was 0.1 g/mL. Cell adhesion experiments showed that all of the scaffolds could support MC3T3-E1 cellular attachment well. This research indicates that MgNH4PO4·H2O/SrHPO4 porous composite scaffolds have potential applications in the bone repair fields.

Funder

Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3