Artificially Induced Pluripotent Stem Cell-Derived Whole-Brain Organoid for Modelling the Pathophysiology of Metachromatic Leukodystrophy and Drug Repurposing

Author:

Esmail SallyORCID,Danter Wayne R.ORCID

Abstract

Metachromatic leukodystrophy (MLD) is a rare neurodegenerative disease that results from a deficiency of the lysosomal enzyme arylsulfatase A (ARSA). Worldwide, there are between one in 40,000 and one in 160,000 people living with the disease. While there are currently no effective treatments for MLD, induced pluripotent stem cell-derived brain organoids have the potential to provide a better understanding of MLD pathogenesis. However, developing brain organoid models is expensive, time consuming and may not accurately reflect disease progression. Using accurate and inexpensive computer simulations of human brain organoids could overcome the current limitations. Artificially induced whole-brain organoids (aiWBO) have the potential to greatly expand our ability to model MLD and guide future wet lab research. In this study, we have upgraded and validated our artificially induced whole-brain organoid platform (NEUBOrg) using our previously validated machine learning platform, DeepNEU (v6.2). Using this upgraded NEUBorg, we have generated aiWBO simulations of MLD and provided a novel approach to evaluate factors associated with MLD pathogenesis, disease progression and new potential therapeutic options.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3