Abstract
The development of cell models of human diseases based on induced pluripotent stem cells (iPSCs) and a cell therapy approach based on differentiated iPSC derivatives has provided a powerful stimulus in modern biomedical research development. Moreover, it led to the creation of personalized regenerative medicine. Due to this, in the last decade, the pathological mechanisms of many monogenic diseases at the cell level have been revealed, and clinical trials of various cell products derived from iPSCs have begun. However, it is necessary to reach a qualitatively new level of research with cell models of diseases based on iPSCs for more efficient searching and testing of drugs. Biosensor technology has a great application prospect together with iPSCs. Biosensors enable researchers to monitor ions, molecules, enzyme activities, and channel conformation in live cells and use them in live imaging and drug screening. These probes facilitate the measurement of steady-state concentrations or activity levels and the observation and quantification of in vivo flux and kinetics. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of the false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the benefits of using biosensors in drug screening. Here, we discuss the possibilities of using biosensor technology in combination with cell models based on human iPSCs and gene editing systems. Furthermore, we focus on the current achievements and problems of using these methods.
Funder
Russian Foundation for Basic Research
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献