Zebrafish Blunt-Force TBI Induces Heterogenous Injury Pathologies That Mimic Human TBI and Responds with Sonic Hedgehog-Dependent Cell Proliferation across the Neuroaxis

Author:

Hentig JamesORCID,Cloghessy Kaylee,Lahne Manuela,Jung Yoo Jin,Petersen Rebecca A.,Morris Ann C.,Hyde David R.ORCID

Abstract

Blunt-force traumatic brain injury (TBI) affects an increasing number of people worldwide as the range of injury severity and heterogeneity of injury pathologies have been recognized. Most current damage models utilize non-regenerative organisms, less common TBI mechanisms (penetrating, chemical, blast), and are limited in scalability of injury severity. We describe a scalable blunt-force TBI model that exhibits a wide range of human clinical pathologies and allows for the study of both injury pathology/progression and mechanisms of regenerative recovery. We modified the Marmarou weight drop model for adult zebrafish, which delivers a scalable injury spanning mild, moderate, and severe phenotypes. Following injury, zebrafish display a wide range of severity-dependent, injury-induced pathologies, including seizures, blood–brain barrier disruption, neuroinflammation, edema, vascular injury, decreased recovery rate, neuronal cell death, sensorimotor difficulties, and cognitive deficits. Injury-induced pathologies rapidly dissipate 4–7 days post-injury as robust cell proliferation is observed across the neuroaxis. In the cerebellum, proliferating nestin:GFP-positive cells originated from the cerebellar crest by 60 h post-injury, which then infiltrated into the granule cell layer and differentiated into neurons. Shh pathway genes increased in expression shortly following injury. Injection of the Shh agonist purmorphamine in undamaged fish induced a significant proliferative response, while the proliferative response was inhibited in injured fish treated with cyclopamine, a Shh antagonist. Collectively, these data demonstrate that a scalable blunt-force TBI to adult zebrafish results in many pathologies similar to human TBI, followed by recovery, and neuronal regeneration in a Shh-dependent manner.

Funder

Indiana State Department of Health

National Science Foundation

NIH Office of the Director

Pat Tillman Scholarship

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3