Detection of SARS-CoV-2 Using Reverse Transcription Helicase Dependent Amplification and Reverse Transcription Loop-Mediated Amplification Combined with Lateral Flow Assay

Author:

Zasada Aleksandra AnnaORCID,Mosiej Ewa,Prygiel MartaORCID,Polak Maciej,Wdowiak Karol,Formińska Kamila,Ziółkowski RobertORCID,Żukowski Kamil,Marchlewicz Kasper,Nowiński Adam,Nowińska Julia,Rastawicki Waldemar,Malinowska ElżbietaORCID

Abstract

Rapid and accurate detection and identification of pathogens in clinical samples is essential for all infection diseases. However, in the case of epidemics, it plays a key role not only in the implementation of effective therapy but also in limiting the spread of the epidemic. In this study, we present the application of two nucleic acid isothermal amplification methods—reverse transcription helicase dependent amplification (RT-HDA) and reverse transcription loop-mediated amplification (RT-LAMP)—combined with lateral flow assay as the tools for the rapid detection of SARS-CoV-2, the etiological agent of COVID-19, which caused the ongoing global pandemic. In order to optimize the RT-had, the LOD was 3 genome copies per reaction for amplification conducted for 10–20 min, whereas for RT-LAMP, the LOD was 30–300 genome copies per reaction for a reaction conducted for 40 min. No false-positive results were detected for RT-HDA conducted for 10 to 90 min, but false-positive results occurred when RT-LAMP was conducted for longer than 40 min. We concluded that RT-HDA combined with LFA is more sensitive than RT-LAMP, and it is a good alternative for the development of point-of-care tests for SARS-CoV-2 detection as this method is simple, inexpensive, practical, and does not require qualified personnel to perform the test and interpret its results.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3