NCI 159456 PERK Inhibitor as a Targeted Therapy for Lung Cancer: An In Vitro Study

Author:

Rozpędek-Kamińska Wioletta1ORCID,Galita Grzegorz1ORCID,Siwecka Natalia1ORCID,Granek Zuzanna1ORCID,Barczuk Julia1ORCID,Saramowicz Kamil1ORCID,Majsterek Ireneusz1

Affiliation:

1. Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland

Abstract

Non-small cell lung cancer (NSCLC) represents the most common histological type of lung cancer, characterized by a five-year survival rate of 15% and poor prognosis. Accumulating evidence indicates a prominent role of endoplasmic reticulum (ER) stress and the protein kinase RNA-like ER kinase (PERK)-dependent pathway of the unfolded protein response (UPR) in the pathogenesis of NSCLC. Increased expression of downstream targets of PERK was observed in various subtypes of NSCLC, and it was associated with a more aggressive phenotype, high risk of recurrence, and poor prognosis. Therefore, the present study aimed to investigate the biological effect of the selective PERK inhibitor NCI 159456 on A549 NSCLC cells and Human Pulmonary Fibroblasts (HPF) in vitro. Treatment of both normal and ER-stressed A549 cells with NCI 159456 resulted in a significant increase in the mRNA expression level of pro-apoptotic genes like activating transcription factor 4 (ATF4), DNA damage inducible transcript 3 (DDIT3), and BCL2 Associated X, Apoptosis Regulator (BAX) as well as a decreased level of the anti-apoptotic gene B-cell lymphoma 2 (Bcl-2). Cytotoxicity and genotoxicity analyses revealed that NCI 159456 significantly decreased viability and increased DNA damage in A549 cells under normal and ER stress conditions. Caspase-3 and reactive oxygen species (ROS) detection assays demonstrated that NCI 159456 significantly induced apoptosis and increased the ROS level in normal and ER-stressed A549 cells. Importantly, treatment with the inhibitor did not affect substantially normal HPF cells at any used concentration. The results indicate that PERK inhibitors could potentially be applied as a targeted therapy for NSCLC.

Funder

Medical University of Lodz, Poland

Polish National Science Centre

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3