Assessment of Substrate Status of Drugs Metabolized by Polymorphic Cytochrome P450 (CYP) 2 Enzymes: An Analysis of a Large-Scale Dataset

Author:

Sommer Jakob12ORCID,Wozniak Justyna1,Schmitt Judith1,Koch Jana1,Stingl Julia C.1ORCID,Just Katja S.1ORCID

Affiliation:

1. Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, 52074 Aachen, Germany

2. Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA

Abstract

Background: The analysis of substrates of polymorphic cytochrome P450 (CYP) enzymes is important information to enable drug–drug interactions (DDIs) analysis and the relevance of pharmacogenetics in this context in large datasets. Our aim was to compare different approaches to assess the substrate properties of drugs for certain polymorphic CYP2 enzymes. Methods: A standardized manual method and an automatic method were developed and compared to assess the substrate properties for the metabolism of drugs by CYP2D6, 2C9, and 2C19. The automatic method used a matching approach to three freely available resources. We applied the manual and automatic methods to a large real-world dataset deriving from a prospective multicenter study collecting adverse drug reactions in emergency departments in Germany (ADRED). Results: In total, 23,878 medication entries relating to 895 different drugs were analyzed in the real-world dataset. The manual method was able to assess 12.2% (n = 109) of drugs, and the automatic method between 12.1% (n = 109) and 88.9% (n = 796), depending on the resource used. The CYP substrate classifications demonstrated moderate to almost perfect agreements for CYP2D6 and CYP2C19 (Cohen’s Kappa (κ) 0.48–0.90) and fair to moderate agreements for CYP2C9 (κ 0.20–0.48). Conclusion: A closer look at different classifications between methods revealed that both methods are prone to error in different ways. While the automated method excels in time efficiency, completeness, and actuality, the manual method might be better able to identify CYP2 substrates with clinical relevance.

Funder

German Federal Ministry of Health

European Union

Interdisciplinary Centre for Clinical Research

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3