MicroRNA Profiling Shows a Time-Dependent Regulation within the First 2 Months Post-Birth and after Mild Neonatal Hypoxia in the Hippocampus from Mice

Author:

Leavy AislingORCID,Brennan Gary P.ORCID,Jimenez-Mateos Eva M.

Abstract

Brain development occurs until adulthood, with time-sensitive processes happening during embryo development, childhood, and puberty. During early life and childhood, dynamic changes in the brain are critical for physiological brain maturation, and these changes are tightly regulated by the expression of specific regulatory genetic elements. Early life insults, such as hypoxia, can alter the course of brain maturation, resulting in lifelong neurodevelopmental conditions. MicroRNAs are small non-coding RNAs, which regulate and coordinate gene expression. It is estimated that one single microRNA can regulate the expression of hundreds of protein-coding genes.. Uncovering the miRNome and microRNA-regulated transcriptomes may help to understand the patterns of genes regulating brain maturation, and their contribution to neurodevelopmental pathologies following hypoxia at Postnatal day 7. Here, using a PCR-based platform, we analyzed the microRNA profile postnatally in the hippocampus of control mice at postnatal day 8, 14, and 42 and after hypoxia at postnatal day 7, to elucidate the set of microRNAs which may be key for postnatal hippocampus maturation. We observed that microRNAs can be divided in four groups based on their temporal expression. Further after an early life insult, hypoxia at P7, 15 microRNAs showed a misregulation over time, including Let7a. We speculated that the transcriptional regulator c-myc is a contributor to this process. In conclusion, here, we observed that microRNAs are regulated postnatally in the hippocampus and alteration of their expression after hypoxia at birth may be regulated by the transcriptional regulator c-myc.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference31 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3