GABA and Combined GABA with GAD65-Alum Treatment Alters Th1 Cytokine Responses of PBMCs from Children with Recent-Onset Type 1 Diabetes

Author:

Heath Katie E.1,Feduska Joseph M.1ORCID,Taylor Jared P.1ORCID,Houp Julie A.2,Botta Davide1ORCID,Lund Frances E.1ORCID,Mick Gail J.3,McGwin Gerald4,McCormick Kenneth L.3,Tse Hubert M.5

Affiliation:

1. Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA

2. Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA

3. Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35294, USA

4. Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA

5. Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Mail Stop 3029, 1012 Wahl Hall West, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA

Abstract

Type 1 diabetes (T1D) is an autoimmune disease culminating in the destruction of insulin-producing pancreatic cells. There is a need for the development of novel antigen-specific strategies to delay cell destruction, including combinatorial strategies that do not elicit systemic immunosuppression. Gamma-aminobutyric acid (GABA) is expressed by immune cells, β-cells, and gut bacteria and is immunomodulatory. Glutamic-acid decarboxylase 65 (GAD65), which catalyzes GABA from glutamate, is a T1D autoantigen. To test the efficacy of combinatorial GABA treatment with or without GAD65-immunization to dampen autoimmune responses, we enrolled recent-onset children with T1D in a one-year clinical trial (ClinicalTrials.gov NCT02002130) and examined T cell responses. We isolated peripheral blood mononuclear cells and evaluated cytokine responses following polyclonal activation and GAD65 rechallenge. Both GABA alone and GABA/GAD65-alum treatment inhibited Th1 cytokine responses over the 12-month study with both polyclonal and GAD65 restimulation. We also investigated whether patients with HLA-DR3-DQ2 and HLA-DR4-DQ8, the two highest-risk human leukocyte antigen (HLA) haplotypes in T1D, exhibited differences in response to GABA alone and GABA/GAD65-alum. HLA-DR4-DQ8 patients possessed a Th1-skewed response compared to HLA-DR3-DQ2 patients. We show that GABA and GABA/GAD65-alum present an attractive immunomodulatory treatment for children with T1D and that HLA haplotypes should be considered.

Funder

NIH/NIDDK R01 award

JDRF award

JDRF

Diamyd Medical, and Janssen Research and Development, LLC

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3