Predicting Drug–Gene–Disease Associations by Tensor Decomposition for Network-Based Computational Drug Repositioning

Author:

Kim Yoonbee1,Cho Young-Rae12ORCID

Affiliation:

1. Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea

2. Division of Digital Healthcare, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea

Abstract

Drug repositioning offers the significant advantage of greatly reducing the cost and time of drug discovery by identifying new therapeutic indications for existing drugs. In particular, computational approaches using networks in drug repositioning have attracted attention for inferring potential associations between drugs and diseases efficiently based on the network connectivity. In this article, we proposed a network-based drug repositioning method to construct a drug–gene–disease tensor by integrating drug–disease, drug–gene, and disease–gene associations and predict drug–gene–disease triple associations through tensor decomposition. The proposed method, which ensembles generalized tensor decomposition (GTD) and multi-layer perceptron (MLP), models drug–gene–disease associations through GTD and learns the features of drugs, genes, and diseases through MLP, providing more flexibility and non-linearity than conventional tensor decomposition. We experimented with drug–gene–disease association prediction using two distinct networks created by chemical structures and ATC codes as drug features. Moreover, we leveraged drug, gene, and disease latent vectors obtained from the predicted triple associations to predict drug–disease, drug–gene, and disease–gene pairwise associations. Our experimental results revealed that the proposed ensemble method was superior for triple association prediction. The ensemble model achieved an AUC of 0.96 in predicting triple associations for new drugs, resulting in an approximately 7% improvement over the performance of existing models. It also showed competitive accuracy for pairwise association prediction compared with previous methods. This study demonstrated that incorporating genetic information leads to notable advancements in drug repositioning.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3