Metabolic Profiles Point Out Metabolic Pathways Pivotal in Two Glioblastoma (GBM) Cell Lines, U251 and U-87MG

Author:

Martins Filipa12ORCID,van der Kellen David12,Gonçalves Luís G.3ORCID,Serpa Jacinta12ORCID

Affiliation:

1. iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal

2. Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal

3. Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal

Abstract

Glioblastoma (GBM) is the most lethal central nervous system (CNS) tumor, mainly due to its high heterogeneity, invasiveness, and proliferation rate. These tumors remain a therapeutic challenge, and there are still some gaps in the GBM biology literature. Despite the significant amount of knowledge produced by research on cancer metabolism, its implementation in cancer treatment has been limited. In this study, we explored transcriptomics data from the TCGA database to provide new insights for future definition of metabolism-related patterns useful for clinical applications. Moreover, we investigated the impact of key metabolites (glucose, lactate, glutamine, and glutamate) in the gene expression and metabolic profile of two GBM cell lines, U251 and U-87MG, together with the impact of these organic compounds on malignancy cell features. GBM cell lines were able to adapt to the exposure to each tested organic compound. Both cell lines fulfilled glycolysis in the presence of glucose and were able to produce and consume lactate. Glutamine dependency was also highlighted, and glutamine and glutamate availability favored biosynthesis observed by the increase in the expression of genes involved in fatty acid (FA) synthesis. These findings are relevant and point out metabolic pathways to be targeted in GBM and also reinforce that patients’ metabolic profiling can be useful in terms of personalized medicine.

Funder

Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior

MOSTMICRO-ITQB

Associated Laboratory LS4FUTURE

FCT

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3