An Integrative Transcriptomic and Methylation Approach for Identifying Differentially Expressed Circular RNAs Associated with DNA Methylation Change

Author:

Xu TianyiORCID,Wang LiPing,Jia Peilin,Song Xiaofeng,Zhao ZhongmingORCID

Abstract

Recently, accumulating evidence has supported that circular RNA (circRNA) plays important roles in tumorigenesis by regulating gene expression at transcriptional and post-transcriptional levels. Expression of circRNAs can be epigenetically silenced by DNA methylation; however, the underlying regulatory mechanisms of circRNAs by DNA methylation remains largely unknown. We explored this regulation in hepatocellular carcinoma (HCC) using genome-wide DNA methylation and RNA sequencing data of the primary tumor and matched adjacent normal tissues from 20 HCC patients. Our pipeline identified 1012 upregulated and 747 downregulated circRNAs (collectively referred to as differentially expressed circRNAs, or DE circRNAs) from HCC RNA-seq data. Among them, 329 DE circRNAs covered differentially methylated sites (adjusted p-value < 0.05, |ΔM| > 0.5) in circRNAs’ interior and/or flanking regions. Interestingly, the corresponding parental genes of 46 upregulated and 31 downregulated circRNAs did not show significant expression change in the HCC tumor versus normal samples. Importantly, 34 of the 77 DE circRNAs (44.2%) had significant correlation with DNA methylation change in HCC (Spearman’s rank-order correlation, p-value < 0.05), suggesting that aberrant DNA methylation might regulate circular RNA expression in HCC. Our study revealed genome-wide differential circRNA expression in HCC. The significant correlation with DNA methylation change suggested that epigenetic regulation might act on both mRNA and circRNA expression. The specific regulation in HCC and general view in other cancer or disease requires further investigation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3