Abstract
Cancer-associated fibroblasts (CAFs) represent an important component of the tumour microenvironment and are implicated in disease progression. Two outstanding questions in cancer biology are how CAFs arise and how they might be targeted therapeutically. The calcium signal also has an important role in tumorigenesis. To date, the role of calcium signalling pathways in the induction of the CAF phenotype remains unexplored. A CAF model was generated through exogenous transforming growth factor beta 1 (TGFβ1) stimulation of the normal human mammary fibroblast cell line, HMF3S (HMF3S-CAF), and changes in calcium signalling were investigated. Functional changes in HMF3S-CAF calcium signalling pathways were assessed using a fluorescent indicator, gene expression, gene-silencing and pharmacological approaches. HMF3S-CAF cells demonstrated functionally altered calcium influx pathways with reduced store-operated calcium entry. In support of a calcium signalling switch, two voltage-gated calcium channel (VGCC) family members, CaV1.2 and CaV3.2, were upregulated in HMF3S-CAFs and a subset of patient-derived breast CAFs. Both siRNA-mediated silencing and pharmacological inhibition of CaV1.2 or CaV3.2 significantly impaired CAF activation in HMF3S cells. Our findings show that VGCCs contribute to TGFβ1-mediated induction of HMF3S-CAF cells and both transcriptional interference and pharmacological antagonism of CaV1.2 and CaV3.2 inhibit CAF induction. This suggests a potential therapeutic role for targeting calcium signalling in breast CAFs.
Funder
U.S. Department of Defense
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献