Management of Chronic and Neuropathic Pain with 10 kHz Spinal Cord Stimulation Technology: Summary of Findings from Preclinical and Clinical Studies

Author:

Tieppo Francio ViniciusORCID,Polston Keith F.ORCID,Murphy Micheal T.ORCID,Hagedorn Jonathan M.ORCID,Sayed Dawood

Abstract

Since the inception of spinal cord stimulation (SCS) in 1967, the technology has evolved dramatically with important advancements in waveforms and frequencies. One such advancement is Nevro’s Senza® SCS System for HF10, which received Food and Drug and Administration (FDA) approval in 2015. Low-frequency SCS works by activating large-diameter Aβ fibers in the lateral discriminatory pathway (pain location, intensity, quality) at the dorsal column (DC), creating paresthesia-based stimulation at lower-frequencies (30–120 Hz), high-amplitude (3.5–8.5 mA), and longer-duration/pulse-width (100–500 μs). In contrast, high-frequency 10 kHz SCS works with a proposed different mechanism of action that is paresthesia-free with programming at a frequency of 10,000 Hz, low amplitude (1–5 mA), and short-duration/pulse-width (30 μS). This stimulation pattern selectively activates inhibitory interneurons in the dorsal horn (DH) at low stimulation intensities, which do not activate the dorsal column fibers. This ostensibly leads to suppression of hyperexcitable wide dynamic range neurons (WDR), which are sensitized and hyperactive in chronic pain states. It has also been reported to act on the medial pathway (drives attention and pain perception), in addition to the lateral pathways. Other theories include a reversible depolarization blockade, desynchronization of neural signals, membrane integration, glial–neuronal interaction, and induced temporal summation. The body of clinical evidence regarding 10 kHz SCS treatment for chronic back pain and neuropathic pain continues to grow. There is high-quality evidence supporting its use in patients with persistent back and radicular pain, particularly after spinal surgery. High-frequency 10 kHz SCS studies have demonstrated robust statistically and clinically significant superiority in pain control, compared to paresthesia-based SCS, supported by level I clinical evidence. Yet, as the field continues to grow with the technological advancements of multiple waveforms and programming stimulation algorithms, we encourage further research to focus on the ability to modulate pain with precision and efficacy, as the field of neuromodulation continues to adapt to the modern healthcare era.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3