Optimization of Heparin Monitoring with Anti-FXa Assays and the Impact of Dextran Sulfate for Measuring All Drug Activity

Author:

Amiral Jean,Amiral Cédric,Dunois Claire

Abstract

Heparins, unfractionated or low molecular weight, are permanently in the spotlight of both clinical indications and laboratory monitoring. An accurate drug dosage is necessary for an efficient and safe therapy. The one-stage kinetic anti-FXa assays are the most widely and universally used with full automation for large series, without needing exogenous antithrombin. The WHO International Standards are available for UFH and LMWH, but external quality assessment surveys still report a high inter-assay variability. This heterogeneity results from the following: assay formulation, designed without or with dextran sulfate to measure all heparin in blood circulation; calibrators for testing UFH or LMWH with the same curve; and automation parameters. In this study, various factors which impact heparin measurements are reviewed, and we share our experience to optimize assays for testing all heparin anticoagulant activities in plasma. Evidence is provided on the usefulness of low molecular weight dextran sulfate to completely mobilize all of the drug present in blood circulation. Other key factors concern the adjustment of assay conditions to obtain fully superimposable calibration curves for UFH and LMWH, calibrators’ formulations, and automation parameters. In this study, we illustrate the performances of different anti-FXa assays used for testing heparin on UFH or LMWH treated patients’ plasmas and obtained using citrate or CTAD anticoagulants. Comparable results are obtained only when the CTAD anticoagulant is used. Using citrate as an anticoagulant, UFH is underestimated in the absence of dextran sulfate. Heparin calibrators, adjustment of automation parameters, and data treatment contribute to other smaller differences.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3