Different Trajectories for Diabetes Mellitus Onset and Recovery According to the Centralized Aerobic–Anaerobic Energy Balance Compensation Theory

Author:

Vetcher Alexandre A.12ORCID,Zhukov Kirill V.1,Gasparyan Bagrat A.1,Borovikov Pavel I.3ORCID,Karamian Arfenia S.2,Rejepov Dovlet T.2ORCID,Kuznetsova Maria N.2,Shishonin Alexander Y.1

Affiliation:

1. Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia

2. Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia, n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia

3. FSBI National Medical Research Center for Obstetrics, Gynecology and Perinatology n.a. V. I. Kulakov of the Ministry of Healthcare of the Russian Federation, 4, Oparina Str., 117997 Moscow, Russia

Abstract

We recently reported that the restoration of cervical vertebral arterial blood flow access (measured as systolic peak (PS)) to the rhomboid fossa leads to the recovery of the HbA1c level in the case of patients with a pre-Diabetes Mellitus (pre-DM) condition. The theory of centralized aerobic–anaerobic energy balance compensation (TCAAEBC) provides a successful theoretical explanation for this observation. It considers the human body as a dissipative structure. Reported connections between arterial hypertension (AHT) and the level of HbA1c are linked through OABFRH. According to the TCAAEBC, this delivers incorrect information about blood oxygen availability to the cerebellum. The restoration of PS normalizes AHT in 5–6 weeks and HbA1c in 12–13 weeks. In the current study, we demonstrate the model which fits the obtained experimental data. According to the model, pathways of onset and recovery from pre-DM are different. The consequence of these differences is discussed. The great significance of the TCAAEBC for medical practice forces the creation of an appropriate mathematical model, but the required adjustment of the model needs experimental data which can only be obtained from an animal model(s). The essential part of this study is devoted to the analysis of the advantages and disadvantages of widely available common mammalian models for TCAAEBC cases.

Funder

RUDN University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3