Renin–Angiotensin System Components and Arachidonic Acid Metabolites as Biomarkers of COVID-19

Author:

Ghimire Biwash1ORCID,Pour Sana Khajeh1,Middleton Elizabeth2,Campbell Robert A.3,Nies Mary A.4,Aghazadeh-Habashi Ali1

Affiliation:

1. College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA

2. Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT 84112, USA

3. Department of Internal Medicine, Division ofHematology, University of Utah, Salt Lake City, UT 84112, USA

4. College of Health, School of Nursing, Idaho State University, Pocatello, ID 83209, USA

Abstract

Through the ACE2, a main enzyme of the renin–angiotensin system (RAS), SARS-CoV-2 gains access into the cell, resulting in different complications which may extend beyond the RAS and impact the Arachidonic Acid (ArA) pathway. The contribution of the RAS through ArA pathways metabolites in the pathogenesis of COVID-19 is unknown. We investigated whether RAS components and ArA metabolites can be considered biomarkers of COVID-19. We measured the plasma levels of RAS and ArA metabolites using an LC-MS/MS. Results indicate that Ang 1–7 levels were significantly lower, whereas Ang II levels were higher in the COVID-19 patients than in healthy control individuals. The ratio of Ang 1–7/Ang II as an indicator of the RAS classical and protective arms balance was dramatically lower in COVID-19 patients. There was no significant increase in inflammatory 19-HETE and 20-HETE levels. The concentration of EETs was significantly increased in COVID-19 patients, whereas the DHETs concentration was repressed. Their plasma levels were correlated with Ang II concentration in COVID-19 patients. In conclusion, evaluating the RAS and ArA pathway biomarkers could provide helpful information for the early detection of high-risk groups, avoid delayed medical attention, facilitate resource allocation, and improve patient clinical outcomes to prevent long COVID incidence.

Funder

ISU’s Office for Research Internal Small Grant Program

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3