Recent Advancements in AAV-Vectored Immunoprophylaxis in the Nonhuman Primate Model

Author:

Campbell Elena S. B.1,Goens Melanie M.1ORCID,Cao Wenguang2,Thompson Brad3,Susta Leonardo1ORCID,Banadyga Logan2ORCID,Wootton Sarah K.1ORCID

Affiliation:

1. Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada

2. Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada

3. Avamab Pharma Inc., Calgary, AB T2T 2P9, Canada

Abstract

Monoclonal antibodies (mAbs) are important treatment modalities for preventing and treating infectious diseases, especially for those lacking prophylactic vaccines or effective therapies. Recent advances in mAb gene cloning from naturally infected or immunized individuals has led to the development of highly potent human mAbs against a wide range of human and animal pathogens. While effective, the serum half-lives of mAbs are quite variable, with single administrations usually resulting in short-term protection, requiring repeated doses to maintain therapeutic concentrations for extended periods of time. Moreover, due to their limited time in circulation, mAb therapies are rarely given prophylactically; instead, they are generally administered therapeutically after the onset of symptoms, thus preventing mortality, but not morbidity. Adeno-associated virus (AAV) vectors have an established record of high-efficiency in vivo gene transfer in a variety of animal models and humans. When delivered to post-mitotic tissues such as skeletal muscle, brain, and heart, or to organs in which cells turn over slowly, such as the liver and lungs, AAV vector genomes assume the form of episomal concatemers that direct transgene expression, often for the lifetime of the cell. Based on these attributes, many research groups have explored AAV-vectored delivery of highly potent mAb genes as a strategy to enable long-term expression of therapeutic mAbs directly in vivo following intramuscular or intranasal administration. However, clinical trials in humans and studies in nonhuman primates (NHPs) indicate that while AAVs are a powerful and promising platform for vectored immunoprophylaxis (VIP), further optimization is needed to decrease anti-drug antibody (ADA) and anti-capsid antibody responses, ultimately leading to increased serum transgene expression levels and improved therapeutic efficacy. The following review will summarize the current landscape of AAV VIP in NHP models, with an emphasis on vector and transgene design as well as general delivery system optimization. In addition, major obstacles to AAV VIP, along with implications for clinical translation, will be discussed.

Funder

Canadian Institutes of Health Research

Public Health Agency of Canada

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3