Combination Therapy with Trastuzumab and Niraparib: Quantifying Early Proliferative Alterations in HER2+ Breast Cancer Models

Author:

Mansur Ameer1ORCID,Song Patrick N.23,Lu Yun23ORCID,Burns Andrew C.1ORCID,Sligh Luke2,Yang Eddy S.4ORCID,Sorace Anna G.125ORCID

Affiliation:

1. Department of Biomedical Engineering, The University of Alabama, Birmingham, AL 35233, USA

2. Department of Radiology, The University of Alabama, Birmingham, AL 35233, USA

3. Graduate Biomedical Sciences, The University of Alabama, Birmingham, AL 35233, USA

4. Department of Radiation Oncology, University of Kentucky, Lexington, KY 40506, USA

5. O’Neal Comprehensive Cancer Center, The University of Alabama, Birmingham 35233, AL, USA

Abstract

HER2–targeted treatments have improved survival rates in HER2+ breast cancer patients, yet poor responsiveness remains a major clinical obstacle. Recently, HER2+ breast cancer cells, both resistant and responsive to HER2–targeted therapies, have demonstrated sensitivity to poly–(ADP–ribose) polymerase (PARP) inhibition, independent of DNA repair deficiencies. This study seeks to describe biological factors that precede cell viability changes in response to the combination of trastuzumab and PARP inhibition. Treatment response was evaluated in HER2+ and HER2– breast cancer cells. Further, we evaluated the utility of 3′–Deoxy–3′–[18F]–fluorothymidine positron emission tomography ([18F]FLT–PET) imaging for early response assessment in a HER2+ patient derived xenograft (PDX) model of breast cancer. In vitro, we observed decreased cell viability. In vivo, we observed decreased inhibition in tumor growth in combination therapies, compared to vehicle and monotherapy–treated cohorts. Early assessment of cellular proliferation corresponds to endpoint cell viability. Standard summary statistics of [18F]FLT uptake from PET were insensitive to early proliferative changes. Meanwhile, histogram analysis of [18F]FLT uptake indicated the potential translatability of imaging proliferation biomarkers. This study highlights the potential of combined trastuzumab and PARP inhibition in HER2+ breast cancer, while demonstrating a need for optimization of [18F]FLT–PET quantification in heterogeneous models of HER2+ breast cancer.

Funder

ACS

NIH NCI

O’Neal Comprehensive Cancer Center’s Preclinical Imaging Shared Facility

National Institute of General Medical Sciences of the National Institutes of Health

CPRIT Core Facilities Support

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3