A Protective Effect of Pirfenidone in Lung Fibroblast–Endothelial Cell Network via Inhibition of Rho-Kinase Activity

Author:

Nakamura Yusuke1ORCID,Shimizu Yasuo1ORCID,Fujimaki-Shiraishi Mio1,Uchida Nobuhiko1,Takemasa Akihiro1ORCID,Niho Seiji1

Affiliation:

1. Department of Pulmonary Medicine and Clinical Immunology, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu 321-0293, Tochigi, Japan

Abstract

Pulmonary fibrosis is a life-threatening disease that has been attributed to several causes. Specifically, vascular injury is thought to be involved in the pathogenesis of fibrosis. The effects of the antifibrotic drug pirfenidone on angiogenesis have not been fully elucidated. This study aimed to investigate the effects of pirfenidone in human lung fibroblast–endothelial cell co-culture network formation and to analyze the underlying molecular mechanisms. Human lung fibroblasts were co-cultured with human umbilical vein endothelial cells to establish a co-culture network cell sheet. The influence of pirfenidone was evaluated for protective effect on the endothelial network in cell sheets stimulated with transforming growth factor β (TGF-β). Results indicated that TGF-β disrupted the network formation. Pirfenidone and Y27632 (Rho-associated coiled-coil containing protein kinase [Rho-kinase or ROCK] inhibitor) protected against the TGF-β–induced endothelial network disruption. TGF-β activated Rho-kinase signaling in cells composing the co-culture cell sheet, whereas pirfenidone and Y27632 inhibited these effects. In conclusion, TGF-β–induced Rho-kinase activation and disrupted endothelial network formation. Pirfenidone suppressed TGF-β–induced Rho-kinase activity in cell sheets, thereby enabling vascular endothelial cells networks to be preserved in the cell sheets. These findings suggest that pirfenidone has potential vascular network–preserving effect via inhibiting Rho-kinase activity in vascular injury, which is a precursor to pulmonary fibrosis.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3