Effect of Kinins on the Hepatic Oxidative Stress in Mice Treated with a Methionine-Choline Deficient Diet

Author:

Thomaz Mariana Silva1,Sertorio Marcela Nascimento1,Gazarini Marcos Leoni1ORCID,Ribeiro Daniel Araki1ORCID,Pisani Luciana Pellegrini1,Nagaoka Marcia Regina1

Affiliation:

1. Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil

Abstract

Non-alcoholic fatty liver is the leading cause of hepatic disease worldwide and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) due to cell injury, oxidative stress, and apoptosis. The kinins’ role in the liver has been studied in experimental fibrosis, partial hepatectomy, and ischemia-reperfusion and is related to cell death and regeneration. We investigated its role in experimental NASH induced by a methionine-choline deficient diet for 4 weeks. After that, liver perfusion was performed, and bradykinin (BK) or des-Arg9-BK was infused. Cell death was evaluated by cathepsin-B and caspase-3 activity and oxidative stress by catalase (CAT), glutathione S-transferase, and superoxide dismutase (SOD) activities, as well as malondialdehyde and carbonylated proteins. In control livers, DABK increased CAT activity, which was reversed by antagonist DALBK. In the NASH group, kinins tend to decrease antioxidant activity, with SOD activity being significantly reduced by BK and DABK. Malondialdehyde levels increased in all NASH groups, but carbonylated protein did not. DABK significantly decreased cathepsin-B in the NASH group, while caspase-3 was increased by BK in control animals. Our results suggest that B1R and/or B2R activation did not induce oxidative stress but affected the antioxidant system, reducing SOD in the NASH group.

Funder

São Paulo Research Foundation

Coordination of Superior Level Staff Improvement

National Council for Developing Science and Technology

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3