Abstract
A genetic defect in urate transporter 1 (URAT1) is the major cause of renal hypouricemia (RHUC). Although RHUC is detected using a serum uric acid (UA) concentration <2.0 mg/dL, the relationship between the genetic state of URAT1 and serum UA concentration is not clear. Homozygosity and compound heterozygosity with respect to mutant URAT1 alleles are associated with a serum UA concentration of <1.0 mg/dL and are present at a prevalence of ~0.1% in Japan. In heterozygous individuals, the prevalence of a serum UA of 1.1–2.0 mg/dL is much higher in women than in men. The frequency of mutant URAT1 alleles is as high as 3% in the general Japanese population. The expansion of a specific mutant URAT1 allele derived from a single mutant gene that occurred in ancient times is reflected in modern Japan at a high frequency. Similar findings were reported in Roma populations in Europe. These phenomena are thought to reflect the ancient migration history of each ethnic group (founder effects). Exercise-induced acute kidney injury (EI-AKI) is mostly observed in individuals with homozygous/compound heterozygous URAT1 mutation, and laboratory experiments suggested that a high UA load on the renal tubules is a plausible mechanism for EI-AKI.
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献