Human Blastocyst Components Detection Using Multiscale Aggregation Semantic Segmentation Network for Embryonic Analysis

Author:

Arsalan MuhammadORCID,Haider AdnanORCID,Cho Se Woon,Kim Yu Hwan,Park Kang Ryoung

Abstract

Infertility is one of the most important health concerns worldwide. It is characterized by not being successful of pregnancy after some periods of periodic unprotected sexual intercourse. In vitro fertilization (IVF) is an assisted reproduction technique that efficiently addresses infertility. IVF replaces the actual mode of reproduction through a manual procedure wherein embryos are cultivated in a controlled laboratory environment until they reach the blastocyst stage. The standard IVF procedure includes the transfer of one or two blastocysts from several blastocysts that are grown in a controlled environment. The morphometric properties of blastocysts with their compartments such as trophectoderm (TE), zona pellucida (ZP), inner cell mass (ICM), and blastocoel (BL), are analyzed through manual microscopic analysis to predict viability. Deep learning has been extensively used for medical diagnosis and analysis and can be a powerful tool to automate the morphological analysis of human blastocysts. However, the existing approaches are inaccurate and require extensive preprocessing and expensive architectures. Thus, to cope with the automatic detection of blastocyst components, this study proposed a novel multiscale aggregation semantic segmentation network (MASS-Net) that combined four different scales via depth-wise concatenation. The extensive use of depthwise separable convolutions resulted in a decrease in the number of trainable parameters. Further, the innovative multiscale design provided rich spatial information of different resolutions, thereby achieving good segmentation performance without a very deep architecture. MASS-Net utilized 2.06 million trainable parameters and accurately detects TE, ZP, ICM, and BL without using preprocessing stages. Moreover, it can provide a separate binary mask for each blastocyst component simultaneously, and these masks provide the structure of each component for embryonic analysis. Further, the proposed MASS-Net was evaluated using publicly available human blastocyst (microscopic) imaging data. The experimental results revealed that it can effectively detect TE, ZP, ICM, and BL with mean Jaccard indices of 79.08, 84.69, 85.88%, and 89.28%, respectively, for embryological analysis, which was higher than those of the state-of-the-art methods.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Neural Network Segmentation of Embryo Inner Cell Mass and Trophectoderm Epithelium;2023 IEEE 16th International Conference on Nano/Molecular Medicine & Engineering (NANOMED);2023-12-05

2. Microscopic Video-Based Grouped Embryo Segmentation: A Deep Learning Approach;Cureus;2023-09-17

3. Densely U-Net Models for Human Embryo Segmentation;2023 4th International Conference on Artificial Intelligence and Data Sciences (AiDAS);2023-09-06

4. StoneNet: An Efficient Lightweight Model Based on Depthwise Separable Convolutions for Kidney Stone Detection from CT Images;Interdisciplinary Sciences: Computational Life Sciences;2023-07-15

5. Computer-aided fish assessment in an underwater marine environment using parallel and progressive spatial information fusion;Journal of King Saud University - Computer and Information Sciences;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3