“CAPA in Progress”: A New Real-Life Approach for the Management of Critically Ill COVID-19 Patients

Author:

Carbonell NievesORCID,Alcaráz María Jesús,Serrano-Lázaro Ainhoa,Rodríguez-Gimillo MaríaORCID,Sánchez Ramos DavidORCID,Ros Francisco,Ferrer Josep,Blasco María Luisa,Navarro David,Clari María Ángeles

Abstract

(1) Background: COVID-19-associated pulmonary aspergillosis (CAPA) has worsened the prognosis of patients with pneumonia and acute respiratory distress syndrome admitted to the intensive care unit (ICU). The lack of specific diagnosis criteria is an obstacle to the timely initiation of appropriate antifungal therapy. Tracheal aspirate (TA) has been employed under special pandemic conditions. Galactomannan (GM) antigens are released during active fungal growth. (2) Methods: We proposed the term “CAPA in progress” (CAPA-IP) for diagnosis at an earlier stage by GM testing on TA in a specific population admitted to ICU presenting with clinical deterioration. A GM threshold ≥0.5 was set as the mycological inclusion criterion. This was followed by a pre-emptive short-course antifungal. (3) Results: We prospectively enrolled 200 ICU patients with COVID-19. Of these, 164 patients (82%) initially required invasive mechanical ventilation and GM was tested in TA in 93 patients. A subset of 19 patients (11.5%) fulfilled the CAPA-IP criteria at a median of 9 days after ICU admittance. The median GM value was 3.25 ± 2.82. CAPA-IP cases showed significantly higher ICU mortality [52.6% (10/19) vs. 34.5% (50/145), p = 0.036], as well as a much longer median ICU stay than those with a normal GM index [27 (7–64) vs. 11 (9–81) days, p = 0.008]. All cases were treated with a pre-emptive systemic antifungal for a median time of 19 (3–39) days. (4) Conclusions: CAPA-IP highlights a new real-life early approach in the field of fungal stewardship in ICU programs.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3