The FGFR2c/PKCε Axis Controls MCL-1-Mediated Invasion in Pancreatic Ductal Adenocarcinoma Cells: Perspectives for Innovative Target Therapies

Author:

Ranieri DaniloORCID,French Deborah,Persechino Flavia,Guttieri LuisaORCID,Torrisi Maria Rosaria,Belleudi Francesca

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy whose main characterizations are Kirsten Rat Sarcoma-activating mutations (KRAS) and a highly aggressive phenotype. Based on our recent findings demonstrating that the highly aberrant expression of the mesenchymal isoform of Fibroblast Growth Factor Receptor 2 (FGFR2c) in PDAC cells activates Protein-Kinase C Epsilon (PKCε), which in turn controls receptor-mediated epithelial to mesenchymal transition (EMT), here we investigated the involvement of these signaling events in the establishment of additional tumorigenic features. Using PDAC cell lines expressing divergent levels of the FGFR2c and stable protein depletion approaches by short hairpin RNA (shRNA), we found that FGFR2c expression and its PKCε downstream signaling are responsible for the invasive response to Fibroblast Growth Factor 2 (FGF2) and for anchorage-independent growth. In addition, in vitro clonogenic assays, coupled with the check of the amount of cleaved Poly Adenosine Diphosphate-Ribose Polymerase 1 (PARP1) by Western blot, highlighted the involvement of both FGFR2c and PKCε in cell viability. Finally, monitoring of Myeloid Cell Leukemia 1 (MCL-1) expression and Sarcoma kinase family (SRC) phosphorylation suggested that the FGFR2c/PKCε axis could control cell migration/invasion possibly via MCL-1/SRC-mediated reorganization of the actin cytoskeleton. Being PKCs RAS-independent substrates, the identification of PKCε as a hub molecule downstream FGFR2c at the crossroad of signaling networks governing the main malignant tumor hallmarks could represent an important advance towards innovative target therapies overcoming RAS.

Funder

Ministero dell’Università e della Ricerca MUR

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3