Abstract
Since SARS-CoV-2 emerged in December 2019 in Wuhan, the resulting pandemic has paralyzed the economic and cultural life of the world. Variants of concern (VOC) strongly increase pressure on public health systems. Rapid, easy-to-use, and cost-effective assays are essential to manage the pandemic. Here we present a bioinformatical approach for the fast and efficient design of two innovative serological Particle Enhanced Turbidimetric Immunoassays (PETIA) to quantify the SARS-CoV-2 immunoresponse. To confirm bioinformatical assumptions, an S-RBD- and a Nucleocapsid-based PETIA were produced. Sensitivity and specificity were compared for 95 patient samples using a BioMajesty™ fully automated analyzer. The S-RBD-based PETIA showed necessary specificity (98%) over the N protein-based PETIA (21%). Further, the reactivity and cross-reactivity of the RBD-based PETIA towards variant-derived antibodies of SARS-CoV-2 were assessed by a quenching inhibition test. The inhibition kinetics of the S-RBD variants Alpha, Beta, Delta, Gamma, Kappa, and Omicron were evaluated. In summary, we showed that specific and robust PETIA immunoassays can be rapidly designed and developed. The quantification of the SARS-CoV-2-related immunoresponse of variants (Alpha to Kappa) is possible using specific RBD assays. In contrast, Omicron revealed lower cross-reactivity (approx. 50%). To ensure the quantification of the Omicron variant, modified immunoassays appear to be necessary.
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference58 articles.
1. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin;Zhou;Nature,2020
2. A Novel Coronavirus from Patients with Pneumonia in China, 2019;Zhu;N. Engl. J. Med.,2020
3. (2021, January 22). WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.
4. Treatment for COVID-19: An Overview;Stasi;Eur. J. Pharm.,2020
5. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections;Machhi;J. Neuroimmune Pharm.,2020
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献