Abstract
It has been recently demonstrated that atomic force microscopy (AFM) allows for the rather precise identification of malignancy in bladder and cervical cells. Furthermore, an example of human colorectal epithelial cells imaged in AFM Ringing mode has demonstrated the ability to distinguish cells with varying cancer aggressiveness with the help of machine learning (ML). The previously used ML methods analyzed the entire cell image. The problem with such an approach is the lack of information about which features of the cell surface are associated with a high degree of aggressiveness of the cells. Here we suggest a machine-learning approach to overcome this problem. Our approach identifies specific geometrical regions on the cell surface that are critical for classifying cells as highly or lowly aggressive. Such localization gives a path to colocalize the newly identified features with possible clustering of specific molecules identified via standard bio-fluorescence imaging. The biological interpretation of the obtained information is discussed.
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献