Ventilation Induces Changes in Pulse Wave Transit Time in the Pulmonary Artery

Author:

Mueller-Graf Fabian,Frenkel PaulORCID,Albus Chiara Felicitas,Henkel Maike,Reuter Susanne,Vollmar Brigitte,Tusman Gerardo,Adler Andy,Pulletz Sven,Böhm Stephan H.,Zitzmann Amelie,Reuter Daniel A.

Abstract

Pulse wave transit time (PWTT) shortens as pulmonary artery pressure (PAP) increases and was therefore suggested as a surrogate parameter for PAP. The aim of this analysis was to reveal patterns and potential mechanisms of ventilation-induced periodic changes in PWTT under resting conditions. To measure both PWTT and PAP in five healthy pigs, two pulmonary artery Mikro-Tip™ catheters were inserted into the pulmonary vasculature: one with the tip placed in the pulmonary artery trunk, and a second one placed in a distal segment of the pulmonary artery. Animals received pressure-controlled mechanical ventilation. Ventilation-dependent changes were seen in both variables, PWTT and mean PAP; however, changes in PWTT were not synchronous with changes in PAP. Thus, plotting the value of PWTT for each heartbeat over the respective PAP revealed a characteristic hysteresis. At the beginning of inspiration, PAP rose while PWTT remained constant. During further inspiration, PWTT started to decrease rapidly as mPAP was about to reach its plateau. The same time course was observed during expiration: while mPAP approached its minimum, PWTT increased rapidly. During apnea this hysteresis disappeared. Thus, non-synchronous ventilation-induced changes in PWTT and PAP were found with inspiration causing a significant shortening of PWTT. Therefore, it is suggested that the respiratory cycle should be considered when using PWTT as a surrogate for PAP.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3