Anti-Cancer Activities of Nano Amorphous Calcium Phosphates toward Premalignant and Oral Cancer Cells

Author:

Herendija Evelina1,Jakšić Karišik Milica2ORCID,Milašin Jelena2ORCID,Lazarević Miloš2ORCID,Ignjatović Nenad3ORCID

Affiliation:

1. Multidisciplinary PhD Studies, University of Belgrade, Studentski Trg 1, 11000 Belgrade, Serbia

2. Implant-Research Center, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia

3. Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, 11000 Belgrade, Serbia

Abstract

Despite advancements in treatment, the squamous cell carcinoma (OSCC) patient survival rate remains stagnant. Conventional therapies have limited effectiveness, necessitating novel agents. Our study aims to synthesize and characterize amorphous calcium phosphate nanoparticles (nACPs), assess their potential cytotoxic effects on premalignant and malignant OSCC cells, and investigate possible mechanisms of action. The morphological features of nACP were investigated by field emission scanning coupled with energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and particle size distribution (PSD). Then, we examined the effect of nACPs on nanoparticle uptake, cell adhesion, viability, invasion ability, cell cycle, and gene expression. nACP uptake was dose-dependent, induced limited selectivity in cytotoxicity between healthy and malignant cells, and affected cellular adhesion and invasion. Early apoptosis was the predominant type of cell death. The nACP effect on viability was verified by alterations in the genes associated with apoptosis and proliferation. A high concentration of nACP was shown to arrest the cell cycle progression in the G0/G1 phase of both malignant and premalignant cells. This type of nACP justifies the development of a strategy for its potential use as an anti-cancer agent and/or anti-cancer active carrier for various drugs in oral cancer treatments.

Funder

Science Fund of the Republic of Serbia

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3