Rasagiline Exerts Neuroprotection towards Oxygen–Glucose-Deprivation/Reoxygenation-Induced GAPDH-Mediated Cell Death by Activating Akt/Nrf2 Signaling

Author:

Lecht Shimon1,Lahiani Adi1,Klazas Michal1,Naamneh Majdi Saleem1ORCID,Rubin Limor2,Dong Jiayi3,Zheng Wenhua3,Lazarovici Philip1ORCID

Affiliation:

1. School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel

2. Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel

3. Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China

Abstract

Rasagiline (Azilect®) is a selective monoamine oxidase B (MAO-B) inhibitor that provides symptomatic benefits in Parkinson’s disease (PD) treatment and has been found to exert preclinical neuroprotective effects. Here, we investigated the neuroprotective signaling pathways of acute rasagiline treatment for 22 h in PC12 neuronal cultures exposed to oxygen–glucose deprivation (OGD) for 4 h, followed by 18 h of reoxygenation (R), causing 40% aponecrotic cell death. In this study, 3–10 µM rasagiline induced dose-dependent neuroprotection of 20–80%, reduced the production of the neurotoxic reactive oxygen species by 15%, and reduced the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by 75–90%. In addition, 10 µM rasagiline increased protein kinase B (Akt) phosphorylation by 50% and decreased the protein expression of the ischemia-induced α-synuclein protein by 50% in correlation with the neuroprotective effect. Treatment with 1–5 µM rasagiline induced nuclear shuttling of transcription factor Nrf2 by 40–90% and increased the mRNA levels of the antioxidant enzymes heme oxygenase-1, (NAD (P) H- quinone dehydrogenase, and catalase by 1.8–2.0-fold compared to OGD/R insult. These results indicate that rasagiline provides neuroprotection to the ischemic neuronal cultures through the inhibition of α-synuclein and GAPDH-mediated aponecrotic cell death, as well as via mitochondrial protection, by increasing mitochondria-specific antioxidant enzymes through a mechanism involving the Akt/Nrf2 redox-signaling pathway. These findings may be exploited for neuroprotective drug development in PD and stroke therapy.

Funder

Hebrew University

National Natural Science Foundation of China

Science and Technology Development Fund, Macau SAR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3