Advances in Shear Stress Stimulation of Stem Cells: A Review of the Last Three Decades

Author:

Lin Qiyuan12,Yang Zhen12ORCID,Xu Hao12,Niu Yudi3,Meng Qingchen12,Xing Dan12

Affiliation:

1. Arthritis Clinical and Research Center, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, China

2. Arthritis Institute, Peking University, Beijing 100044, China

3. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China

Abstract

Stem cells are widely used in scientific research because of their ability to self-renew and differentiate into a variety of specialized cell types needed for body functions. However, the self-renewal and differentiation of stem cells are regulated by various stimuli, with mechanical stimulation being particularly notable due to its ability to mimic the physical environment in the body. This study systematically collected 2638 research papers published between 1994 and 2024, employing tools such as VOSviewer, CiteSpace, and GraphPad Prism to uncover research hotspots, publication trends, and collaboration networks. The results indicate a yearly increase in global research on the shear stress stimulation of stem cells, with significant contributions from the United States and China in terms of research investment and output. Future research directions include a deeper understanding of the mechanisms underlying mechanical stimulation’s effects on stem cell differentiation, the development of new materials and scaffold designs to better replicate the natural cellular environment, and advancements in regenerative medicine. Despite considerable progress, challenges remain in translating basic research findings into clinical applications.

Funder

Beijing Natural Science Foundation

Peking University Clinical Scientist Training Program

Natural Science Foundation of China

Innovation Fund for Outstanding Doctoral Students of Peking University Health Science Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3