Prediction of the Global Distribution of Arhopalus rusticus under Future Climate Change Scenarios of the CMIP6

Author:

Fan Yuhang1ORCID,Zhang Xuemei2,Zhou Yuting1,Zong Shixiang1

Affiliation:

1. Key Laboratory of Beijing for the Control of Forest Pests, College of Forestry, Beijing Forestry University, Beijing 100083, China

2. College of Forestry, Shenyang Agricultural University, Shenyang 110866, China

Abstract

Arhopalus rusticus is a significant forestry pest known for its destructive impact on various host plants. This species, commonly found in coniferous forests across the Northern Hemisphere, has successfully spread to regions like New Zealand, Australia, and South America. This research is based on the known distribution sites of A. rusticus. Projections are made for the potential global distribution of A. rusticus under historical climatic conditions (1970–2000) and future climatic conditions (2081–2100) for the four forcing scenarios of the Coupled Model International Comparison Program 6 (CMIP6). The aim was to analyze the effects of climate change on the distribution range of this pest and its invasion trend in the southern hemisphere, and to support relevant departments in enhancing the effectiveness of forestry pest control strategies. The study utilized the Biomod2 software package in R to compare six models: generalized linear models (GLMs), generalized additive models (GAMs), multivariate adaptive regression splines (MARSs), artificial neural networks (ANNs), classification and regression trees (CTAs), and random forests (RFs) for modeling species distributions. The optimal model was selected based on evaluation indexes such as AUC and TSS. Projections of A. rusticus distribution under historical and future climate scenarios were created. The prediction results were visualized using ArcGIS software (version 10.2) to classify fitness levels and calculate distribution areas. Based on evaluation metrics, random forests (RFs) demonstrated the highest average assessment index scores, indicating high prediction accuracy (AUC = 0.99, TSS = 0.91, Kappa = 0.93). Model predictions revealed that, under historical climatic conditions, A. rusticus was predominantly found in northern Europe, eastern Asia, eastern and southwestern coastal regions of North America, and there were also highly suitable regions in parts of the southern hemisphere, including central and southwestern Argentina, southern Australia, New Zealand, and South Africa. Among these models, each of the CMIP6’s different climate prediction scenarios had a significant impact on the predicted distribution of A. rusticus. The SSP126 scenario depicted the broadest range of suitability, while the SSP585 scenario presented the narrowest and, overall, the extent of highly suitable regions was contracting. Multi-model predictions suggested that the potential distribution area of A. rusticus during the period of 2081–2100 would likely expand compared to that of 1970–2000, ranging from an increase of 1.13% (SSP126) up to 6.61% (SSP585), positively correlating with the level of radiative forcing. Notably, the most substantial growth was observed in potentially low-suitability region, escalating from 1.17% (SSP126) to 5.55% (SSP585). The distribution of A. rusticus shows decreasing trends from coastal areas to inland areas and from high to low level suitability of regions, and further expansion into the southern hemisphere under future climate conditions. Therefore, quarantine efforts at ports of entry should be strengthened in areas that are not currently infested but are at risk of invasion, and precise preventive measures should be strengthened in areas that are at risk of further expansion under future climatic conditions to prevent its spread to inland areas.

Funder

The National Key R&D Program of China

Publisher

MDPI AG

Reference36 articles.

1. The occurrence, current damage status, and control strategies of Arhopalus rusticus in China;Lu;J. Shandong For. Sci. Technol.,2021

2. Three major forestry pests in the Arhopalus;Huang;Plant Quar.,2008

3. Identification and distribution of Arhopalus species (Coleoptera: Cerambycidae: Aseminae) in Australia and New Zealand;Wang;New Zealand Entomol.,2003

4. The role of sex and mating status in the expansion process of Arhopalus rusticus (coleoptera: Cerambycidae)—An exotic cerambycid in Argentina;Grilli;Environ. Entomol.,2017

5. A globally coherent fingerprint of climate change impacts across natural systems;Parmesan;Nature,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3