Functional Segregation of Resource Utilization Strategies between Invasive and Native Plants and Invasion Mechanisms in the Water Level Fluctuation Zone: A Case Study of Pengxi River in Three Gorges Reservoir, China

Author:

Cheng Lideng12,Yuan Xingzhong12,Sun Kuo12,Li Peiwu12

Affiliation:

1. Faculty of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China

2. Research Center for Ecological Restoration and Control of Water Level Fluctuating Zone in the Three Gorges Reservoir, Chongqing University, Chongqing 400044, China

Abstract

The ecosystem of the water level fluctuation (WLF) zone of the Three Gorges Reservoir (TGR) is highly vulnerable and sensitive due to its unique cyclical flooding and drought conditions. The ecological impact of biological invasion in this area is particularly severe, making it crucial to study the differences in resource utilization strategies between invasive plants (IPs) and native plants (NPs) using functional traits to explore the mechanisms of invasion. We selected the WLF zone of Pengxi River in the TGR area and conducted a multi-scale study along the elevation gradient. The results reveal that at the regional scale, IPs have a larger height and specific leaf area, smaller leaf tissue density, and specific root length compared to NPs, showing a preference for enhancing aboveground resource acquisition over leaf defense capabilities. They allocate more tissue construction resources to their roots to withstand environmental pressures, which may be the key to their successful intrusion, highlighting the role of niche differentiation. On the community scale, the H and SLA of IPs and NPs are positively correlated with elevation, while the LTD of IPs shows a negative correlation. At elevations of 175 m and below, IP and NP exhibit functional convergence, while above 175 m, functional divergence was observed. This indicates that although the different resource utilization strategies are crucial for successful IP invasion, the environmental filtering from periodic floods and drought pressures play a significant role in community assembly in the WLF zone, allowing IP to integrate into habitats with similar functional characteristics already inhabited by NP and establish their own communities.

Funder

National Natural Science Fund of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3