A Landscape Restoration Initiative Reverses Desertification with High Spatiotemporal Variability in the Hinterland of Northwest China

Author:

Hao Yuanyuan12ORCID,Liu Xin1,Xie Yaowen2ORCID,Hua Limin1ORCID,Liu Xuexia1,Liang Boming1,Wang Yixuan1,Huang Caicheng1,He Shengshen1

Affiliation:

1. College of Grassland Science, Gansu Agricultural University, Engineering and Technology Research Centre for Alpine Rodent Pest Control of National Forestry and Grassland Administration, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou 730070, China

2. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

Abstract

Although we are in an era of enormous global commitments to ecological restoration (the UN Decade on ER; the Bonn Challenge), little attention has been paid to the importance of sustained commitment to individual restoration initiatives and few resources have been dedicated to monitoring, especially the long-term and broad-scale evaluations that would allow us to understand how basin-scale restoration can result in complex spatiotemporal patterns. Remote sensing offers a powerful tool for evaluating restoration initiatives focused on water management in arid regions, where changes in vegetation growth can be tracked visually with measures like the generalized difference vegetation index (GDVI). In this paper, we evaluate the Comprehensive Treatment Program of the Shiyang River Basin (CTSRB), a landscape restoration initiative in China’s northwest, using a widely available remote sensing tool, showing how it can reveal the causes of fluctuating changes in restoration success. We focus on spatiotemporal variation, studying a time series from 2001 to 2020 using regression, trend, and stability analyses for six different divisions of the study region (the study area as a whole, the irrigated areas, the periphery of the irrigated regions, and the districts of Ba, Quanshan, and Hu) to evaluate the effects of the restoration initiative. The study period was divided into four equal-length phases based on the implementation timeline of the CTSRB, which includes one pre- and post-intervention interval and two stages of the CTSRB. We found that the CTSRB has played a positive role in the restoration of vegetation in the Minqin Basin, especially desert vegetation. However, the positive effects were not obvious in the first CTSRB period, which was characterized by a decline in vegetation growth likely caused by the strategy of “close the pumping-wells, transform the land”, which reversed a greening trend caused by the unsustainable irrigation of wasteland prior to the project’s initiation. During the second phase of the CTSRB, vegetation in the regions of “transform the land” gradually improved, and the growth of desert vegetation gradually improved and expanded as a result of more water flowing out of agricultural zones. The rate of vegetation recovery slowed down during the final phase of the CTSRB, and some areas even experienced a decline in the GDVI. Overall, our findings show that the CTSRB, by integrating water management and allowing for uninterrupted ecological restoration, drove complex regional changes in the GDVI, including successful restoration of desert vegetation. The spatiotemporal variable we observed underscores the importance of long-term commitment to arid land restoration initiatives and the importance of even longer-term monitoring using tools like remote sensing.

Funder

Science and Technology Innovation Fund of Gansu Agricultural University

National Natural Science Foundation of China

Innovation Team for Grassland Rodent Hazard Prevention and Control of the National Forestry and Grassland Administration

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3