Urban Land Carbon Emission and Carbon Emission Intensity Prediction Based on Patch-Generating Land Use Simulation Model and Grid with Multiple Scenarios in Tianjin

Author:

Li Xiang1,Liu Zhaoshun1ORCID,Li Shujie1,Li Yingxue1,Wang Weiyu1

Affiliation:

1. College of Earth Sciences, Jilin University, Changchun 130061, China

Abstract

With regard to the aims of achieving the “Dual Carbon” goal and addressing the significant greenhouse gas emissions caused by urban expansion, there has been a growing emphasis on spatial research and the prediction of urban carbon emissions. This article examines land use data from 2000 to 2020 and combines Grid and the PLUS model to predict carbon emissions in 2030 through a multi-scenario simulation. The research findings indicate the following: (1) Between 2000 and 2020, construction land increased by 95.83%, with carbon emissions also increasing. (2) By 2030, for the NDS (natural development scenario), carbon emissions are expected to peak at 6012.87 × 104 t. Regarding the ratio obtained through the EDS (economic development scenario), construction land is projected to grow to 3990.72 km2, with expected emissions of 6863.29 × 104 t. For the LCS (low-carbon scenario), the “carbon peak” is expected to be reached before 2030. (3) The intensity of carbon emissions decreases as the city size increases. (4) The shift of the center of carbon emission intensity and the center of construction land all indicate movement towards the southeast. Studying the trends of regional land use change and the patterns of land use carbon emissions is beneficial for optimizing the land use structure, thereby enabling us to achieve low-carbon emission reductions and sustainable urban development.

Funder

Natural Science Foundation of Jilin Province, China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3