Thirty Years of Change in the Land Use and Land Cover of the Ziz Oases (Pre-Sahara of Morocco) Combining Remote Sensing, GIS, and Field Observations

Author:

Karmaoui Ahmed1,Moumane Adil2,El Jaafari Samir3,Menouni Aziza3,Al Karkouri Jamal2,Yacoubi Mohammed4,Hajji Lhoussain5ORCID

Affiliation:

1. Bioactives, Health & Environment Laboratory, Epigenetics, Faculty of Science and Techniques, Errachidia (UMI), Moroccan Center for Culture and Science, Moulay Ismail University, Meknes 50050, Morocco

2. Department of Geography, Ibn Tofail University, Kenitra 14000, Morocco

3. Cluster of Competency on Health and Environment, Moulay Ismail University, Meknes 52000, Morocco

4. Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco

5. Bioactives, Health and Environmental Laboratory, Epigenetics, Moulay Ismail University, Meknes 50050, Morocco

Abstract

Remote sensing (RS) data and geographic information system (GIS) techniques were used to monitor the changes in the Oasis agroecosystem of the pre-Saharan province of Errachidia, southeastern Morocco. The land use and land cover (LULC) change of the agroecosystem of this province was processed using Landsat time series with 5-year intervals of the last thirty years. The normalized difference vegetation index (NDVI) and the maximum likelihood classification (MLC) were categorized into five classes, including water bodies, cultivated land, bare land, built-up, and desertified land. The overall accuracy of the MLC maps was estimated to be higher than 90%. The finding showed a degradation trend represented by an increase in desertified lands, which tripled in the ten last years, passing from 20.62% in 2011 to 58.49% in 2022. The findings also depicted a decreasing trend in the cultivated area in this period passing from 174.2 km2 in 1991 to 82.2 km2 in 2022. Using NDWI, Landsat images from 1991 to 2021 depicted a strong association between the water reserve in Hassan Eddakhil dam in the upstream area and the LULC changes. The oases from the dam (upstream) to Er-Rissani (downstream) recorded high rates of decline with an increasing trend of desertification due to drought and overuse mainly of groundwater. The outputs of this research effort constitute a significant source of information that may be used to support further research and decision-makers to manage arid ecosystems and achieve the sustainable development goals (SDGs), precisely the SDGs 15 (Life on land).

Funder

Institutional University Cooperation program with Moulay Ismail University

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3