A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific

Author:

Wu Dong L.1ORCID,Carr James L.2ORCID,Friberg Mariel D.13,Summers Tyler C.4,Lee Jae N.5ORCID,Horváth Ákos6ORCID

Affiliation:

1. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

2. Carr Astronautics, Greenbelt, MD 20770, USA

3. Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD 20740, USA

4. Science Systems and Applications Inc., Lanham, MD 20706, USA

5. Goddard Earth Sciences Technology and Research (GESTAR-II), University of Maryland, Baltimore County, Baltimore, MD 21228, USA

6. Meteorological Institute, Universität Hamburg, 20146 Hamburg, Germany

Abstract

Fast atmospheric processes such as deep convection and severe storms are challenging to observe and understand without adequate spatiotemporal sampling. Geostationary (GEO) imaging has the advantage of tracking these fast processes continuously at a cadence of the 10 min global and 1 min mesoscale from thermal infrared (TIR) channels. More importantly, the newly-available GEO-GEO stereo observations from our 3D-Wind algorithm provide more accurate height assignment for atmospheric motion vectors (AMVs) than those from conventional TIR methods. Unlike the radiometric methods, the stereo height is insensitive to radiometric TIR calibration of satellite sensors and can assign the feature height correctly under complex situation (e.g., multi-layer clouds and atmospheric inversion). This paper shows a case study from continuous GEO-GEO stereo observations over the Eastern Pacific during 1–5 February 2023, to highlight diurnal variations of clouds and dynamics in the planetary boundary layer (PBL), altocumulus/congestus, convective outflow and tropical tropopause layer (TTL). Because of their good vertical resolution, the stereo observations often show a wind shear in these cloud layers. As an example, the stereo winds reveal the classic Ekman spiral in marine PBL dynamics with a clockwise (counterclockwise) wind direction change with height in the Northern (Southern) Hemisphere subtropics. Over the Southeastern Pacific, the stereo cloud observations show a clear diurnal variation in the closed-to-open cell transition in the PBL and evidence of precipitation at a lower level from broken stratocumulus clouds.

Funder

NASA Terra Project

High-End Computing (HEC) Program

Sun-Climate Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3